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Abstract

A generalization of the Lanczos tau method is
described for the numerical solution of a class of heat
conduction problems. It is shown to be more efficient

than the Crank-Nicolson method for some typical examples.




Introduction
In a previous paper (Mason, 1967) we have described a

two-dimensional Chebyshev method for the solution of par-
tial differential equations over bounded regions for
certain types of boundary problems. 1In this paper we shall
consider the one-dimensional heat equation and derive a
Chebyshev method which is essentially one-dimensional.

1. The Heat Conduction Problem

Consider the heat conduction equation of the form

Vex Ve T 0 (-1l «x<1, o <t < »)...(1)

with boundary conditions

- - 1%

h_l v + Mo Vi = ﬁ_l (t) on x = -1,

?\lv-.'~ My vx=¢l (t) on x = 1, ..-(2)
v = f£(x) on t = o.’}~

In the usual notation Vi and Ve denote the partial deriv-
atives of v with respect to x and t respectively. The fune

tions ﬂ-l (t), ﬁl (t), £ (x) and the constants A\ A

~17 P 1
Wy are given, and the diffusivity of the substance has
been taken as unity by a suitable transformation of t.

The two methods which are usually advocated for solving
such problems are the Fourier series method and the implicit
finite difference method of Crank and Nicolson (1947). The

Crank-Nicolson scheme for the problem (1), (2) is described

concisely in Smith (1965). The Fourier method, which is
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described in detail in Carslaw and Jaeger (1959), leads to
infinite analytical expansions for the solution v(x, t).
Some typical examples of such expansions are as follows.

Example (i)

Suppose f (x) ié an odd function of x with a Fourier expansion

f(x) = 2 a, sin kix,
k=1

where a, = fl f(x) sin klx dx.

-1
e k21t
Then v(x, t) = Z' a, e sin kllx.
k=1
Example (ii)
A—l = Al = h; by T -1, by = 1; ﬁ-l = ﬁl = 0.
Suppose oy is the kth positive zero of
(az - hz) tan 20 = 2ch,
and that S = h sin ak + % cos s
dk = h cos @, % sin Oy s
= (x) = ¢ COos o X + dk sin o X.
N -1 —axt
Then v{(x,t) = EJ (ak + h2 + h) ak e gk (x), ...(3)
k=1
N
where a = [ £ (x) 9 (x) ax. .e.(4)

This expansion is valid when f (x) has an infinite expansion
. 13 r =
in the functions iqk (x)),{vhich reCuces to0 a "tradiciomal"

Ffourier series cipansion in the cases h = o anc h = o,
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The presence of non-trivial functions ¢—l (t) and ﬁl (t)

in the boundary conditions (2) introduces terms like

- 2
Tt v B2 PR
e T e ?® g?‘l.. (s) = (=07 4 (S)} ds  ...(5)

into the expansions.

For numerical computations the relevant expansion would
be terminated aiier a certain number, say n, ol terms. The
resulting appro:ximation could then be made explicit by cal-
culating n definite integrals like (4) and n indefinite inte-
grals like (5). But, in general, separate expansions are
needed for each distinct line in the t-direction, since the
integrals (5) réquire numerical quadrature. Finite differ-
ence methods like the Crank-Nicolson method are specifically
designed to make use of steps in the t-direction, and the
simplicity of such methods appears to give them a clear
advantage over the Fourier series method. Elliott (196l1) has,
howvever, streamlined the Fourier method into a Chebyshev
method which could oifer stronger competition. Elliott uses
finite difiference approximations in the t-direction to obtain

approximations of form > a, T, (x) to v(x,t) for each t.

-

Using the standard notation, T, (x) denotes the Chebyshev

i
polynomial of degree i, vhich is appropriate to the range
[-1, 11 of x.

This is not the end of the matter, however, since there

are many problems for which the integrals (5) can be evaluated.



explicitly from exact or approximate analytical expressions.
In particular this happens when ﬁ_l (t) and ﬁl (t) can be
acdequately represented by sums of products of functions like
t, e—t, cos t, and sin t. In such cases we believe that the
Fourier method is generally more efficient than Crank-
Nicolson, because it does not involve any step-by-step
integration in the t-direction. Moreover, advantage has been

taken of the exponential behavior of v (x,t) in the adopted

form of approximation.

It is this restricted class of functions ¢~1 and ﬂl with

which the remainder of our discussion will be concerned.

The Fourier method will be streamlined into a Chebyshev

method by adopting approximations to v (x,t) of the form
intl  ap
C.; T, (x) e . (6)

i=0 =1 1]

These approximations will be substantially partial sums

of an infinite expansion
® : _
) L ¢
i=0 =1

LT, ) et (7)
ij i

At first sight the number of coefficients involved in (6)
appears to be of order n2, but in fact it is found that Ci‘
‘may be geﬂerated'by silple recurrence Iormuiae from jusc

2n basic coeZfiiciencs. Thus the Chebyshev method vill in

elfiect bhe one-dimensional.
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2. The Basic Chebyshev Method

The form of approximation (6) will not be adopted imme-
diately. Instead, undetermined functions of t will be used
initially, and it will be shown that these must necessarily
be sums of exponentials.

The heat-conduction problem (1) and (2) is replaced by

the following discrete problem:

Find the solution of form
n

=3 21
viot) =) X" fa  (8) +xb , (8)] ... (8)
i=0
to the partial differential equation
_ ~1l-2n
v v =2 T, (x). [rl (t) + x T2(t)], . 9)

subject to the boundary conditions

K_l v + b_y YV, T ¢—l (t) on x = -1, ...(1l0a)
xl v + Wy v, = ﬂl (t) on x = 1, «..(10b)
v (x,t) = f(x) at the zeros of T2n (x)

on t = 0. ... (10c)

The boundary condition (l0c) is equivalent, in the case
B_, = #, = 0, to the condition
v(x,t) = f¥x) on t = O, ' ...(104)
where f*(x) is the polynomial of degree (2n + 1) which
interpolates f(x) at the 2n zeros of the Chebyshev polynom-

ial T2n (x) subject to the constraints (l0a) and (10b)
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on t = 0. The use of the perturbation term on the right of

(9) is an obvious generalization of the tau method of Lanczos

(1956).

As was inferred in Sec. 1, we shall assume that ¢‘i

are sums of products of functions like t, e—t, cos t, and

and ﬁl

sin t, and that f(x) is continuous and of bounded variation
on (-1, 1]. The restriction on f£(x) ensures that it has a
uniformly convergent Chebyshev series on [ -1+¢, 1-€] for any
€ > 0, which in turn gives substance to the process of
Chebyshev interpolation used in (10c).

Define the constants uo, u oo, un by the equation

ll
1-2n 2n 2n-2

* o 8 +
2 T2n (x) u % + ul X + un,

so that in particular uo = 1. Then the substitution of (8)
into (9) leads, on equating powers of x, to the following

system of first order ordinary differential equations.

Sao 3

g 1 L .(11)
(2n-21+2) (2n-2i+1) a, , - ai . Ty Uy (i=l,...,ni§
_ b(()l)= ‘Tz' "&

/."(12)

. . (1) _ ,
(2n-21i+43) (2n-21i+2) bi—l bi = T ui“(l l,...,n) j

2
Derivatives with respect to t are denoted by any of the

notations

a_ =
ac 20 P % 0



The following relations can be verified by substitution

into (11) and (12).

2 (n) - S (3) .
a i .Lt i a0 . i=0, ..., n e..(13)
J=1
(n) |
2‘ H, (3) i=0, .., n ...(14)
where G,, = {2n+2i-27).. . e (1
i] (2i) ! 13-4 (15)
and H, K = (2n+2i-2j+1). . =
1] (2i+1) ! j-1i ...(16)
for j=41i, ..., nand i =0, ..., n

If conditions (10a), (LOb) are imposed on v(x, t), then

the following relations result

n
\ - N
s (al an— * Bi bn—l) =% 1 (t) B
1=0 {
n ? ee.(17)
and - ]
.Z (Yl i 61 bn-l) gl (t), /
1=0
- - \ = 1 “
where @y X_l 21 W_y Bi A—l + (2i+1) w_y i
...(18)
Yy = Xl + 21 By éi = Xl + (21i+1) by ) /[
Let P, Q, R, S, E be defined as follows.
n
= + + ... *+ = + ... +
P(z) = p, * P, 2 P .z, Q(z) = q, q
R(z) = + + + zn S(z) = + + s
z) = r, ry z ces rn , z) = s, cee n 2
E(z) = eO + e, 2 + ... + e z2n = Q(z) R(z) - P(z) s(z),
...{(19)
where p., ¢., r,, s are some numbers, and z is either a
] J J J

variable or a differential operator. Then, differentiating

(17) n times and substituting for aén; and béfi from (13) and

(14), we obtain the following pair of simultaneous linear
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ordinary differential equations

(n) i
P(p) a + Q(D) by = g7 (t), (

(n) ...(20)
R(D) a, *+ S(D) b, = g, " (&), J
where D denotes %E and
§ —
P. = /o« G.., g = B. H..,
J i=0 1] 3 Z_, ij ...(21a)
= . =) ¢ .
TyT )Y Gy S5 %) %5 By .. .{21b)
Separating a, and bo in (29) we obtain
E(D) a, = -s(0) 83 (e) + o) 8" (v, .. (223)
E(D) by = R(D) ﬁ_(_?_)(t) - ey 2™ (2. .+ (22D)
vhere B and Cor e v @y are defined by (19) . -
The solutions of (22a) and (22b) may be expressed in the
\Zn m.t
- =\ J
form ag =/ kj e + gO (t), .e.(23)
j=1
2n mjt
b =
0 lj e + no (t), ee.{24)
j=1

where §0 (t) and n_. (t) are particular integrals of (22a) and

0]

(.7b) respectively, kj and lj are undetermined constants,

and mj are the 2n roots of the polynomial equation

- 2n _
E(z) = e, + e, z + ... F e, 2 0. .e.(25)

Moreover kj and lj may be shown to be connected by the
relation
k. R(m.) + 1.8 (m,) =0
J ( J) J ( J
If we denote R(mj) by Rj and S(mj) by Sj, then kj and

lj may be expressed in terms of an unknown hj by writing




k. = h. S. and 1. = -h_, R.. ...(26)
J J 3J J J 3

The constants mj are determined by (25), and it remains
to determine hj' But first the remaining coefficients al,

..., @ , b

n 1 e bn must be expressed in similar forms to

(23) and (24), and this can be achieved by applying the
equations (11) and (12) to (23) and (24). Suppose that
Mj = (mj)—l for each j,

then it can be verified that

2n m.t
a. () =1\ A J z i = . ce
i Lok Byge +5, (), 1=0, ..., n (27)
i=1
: 2n mjt
bi (t) =,L, lj Bij e + ni (t), 1=0, ..., n ...(28)
J=1
where
= ll .. = - .+ - ‘+ . . .+ s e o
Aoj AlJ (2n-2i+2)(2n~21+1) MJ Al-l,j ug (29)
= = -2i+ ~2i+ . Lota,, ...
BOj 1, Bij (2n-2i+3) (2n-21+2) Mj Bl—l,j u. (30)

for j =1, 2, ..., 2nand i1 =1, 2, ..., n,
and ii (t), ni (t) are functions which may be determined
explicitly from EO (t) and Mo (t) by applying the relations
(11) and (12).

Moreover, similar formulae can be deduced for 7. and T,..

1 2
2n m.t
' 1
Ty T > kj mj e d - §é ) (t), ...(31)
351
‘21'1 m.t 1
T2= ->_ l.m.ej -ﬂé) (t). ...(32)
4T 3

Assuming that the mj are all real and negative, we note

that Ty and Ty decay asymptotically to zero if and only if



T

P W . 2 -
Clig€ Sae 18 rue ¢f ~ ”ﬂ‘-“ha""i"”]y.

a
‘,o (=2 1Y ~|O ¢ e TStV S

This is true in the trivial case in which @ 1 apd ¢l

are identically zero, for the functions § , ..., Zn, no,
... M are all then identically zero. No formulae will

be derived here for Ei and ni in a general case, but in
Section 3 below we shall cover in detail the particular case
in which ﬂ-l and ﬁl are both polynomials in t.

Combining (8), (26), (27), and (28) leads to the follow-

ing formula for v(x,t).

v(x,t) = U(x,t) +V(x,t), ...(33)
where
n 2n 2n-2] m.t
U(x,t) = N x2n-2i ) (Sj Aij -X R. Bi.),..i34
n - , .
and Vix,t) =) A [$. @) +xn (&) -+ - (35)
i=0 i i .

The boundary condition (10c) is all that remains to be
satisfied in the discrete problem (9), (10a-c). This condi-
tion specifies that

v(x,0) = f(x) at the 2n zeros of T2n (x), ...(36)
where v(x,t) is defined by (33). These are just 2n simul-
tancous linear equations for the determination of the 2n
unknowns hj.

Thus the solution of the discrete problem has reduced
to the determination of the gquantities mj and h. by the
solution of the polynomial (25) and the set of linear equa-

tions (36).
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2.1 Special Cases

If K—l' hl h_pe By satisfy

then it can be verified that ey = o, ey # 0 in (25). whus (25)

has a simple zero root, say m., . The particular case in which

2n

both (xl + pl) and (-k_l + u_l) are zero is of no practical

interest. On the other hand, the case x_l = Kl = 0 is of

interest and is covered by the special Chebyshev method of Sec-
tion 4. 1In all other cases of (37) we sinply modify the rela-
tions (29) and (30) by setting Ai,Zn = Bi,2n = 0 for i = O,

eee, n — 1.

2.2 Chebyshev Coefficients and Error Estimates

The function U(x,t) of (34) may be rewritten in the form

=\ ) J
U(xlt) ; ‘/—'J Kij X e ! ‘..(38)
i=0 j=1

where Kij are easily computed. The form (38) may in turn be

rearranged into the Chebyshev form of (6), namely
2n+l  2n m.t

\

U(x,t) = > cij~Ti (x) e 7, ...(39)

=
o

i=0 4=1

where Cij are readily generated from Kij'

Similarly V(x,t) may be rewritten as

2n+1
Vix,t) =) ¢, () T, (x), ...(40)

/

—i

i=0

. . 1!
where {Ci (t)} are easily calculated from 1€i (t)f, ' (t)}~

- -




Now, from (39), we may write

2n+1
U(x,t) = )
i=0
2n m.t
where D, (t) =" C.. e J
1 J 1]
j=1

Since !Ti (x)] < 1, estimates may be made of the discrepancy
between the solutions of the discrete problem and the
original problem on any line in the t-direction by com-
paring the coefficients Di (t) and Qi (t) which are obtained
for different choices of n.

Errors could also be estimated by analyzing the
perturbation terms on the right hand side of (9), using the

formulae (31) and (32). But it seems simpler to compare

Chebyshev coefficients.




1%
- L3 -

3. Separation of Steady State and Transient Solutions

The solution v{x,t) of the original problem (1) and (2)

of Section 1 may be separated into two distinct parts

v(x,t) = U(x,t) + V(x,t) (41)
The function V(x,t) is a particular solution of
vxx - Vt = 0 (42)
such that K-l vV + b_y Vx = ¢_l(t) on x= -1, 7
% (43)
and kl V + Wy Vx = ¢l(t) on x =1 ”‘f
The function U(x,t) is then determined from
v, " U =0 (44)
subject to k-l U + u_l Ux =0 on x = -1,
Al U + ”1 Ux =0 on x = 1, (45)
U = g(x) on t = o,
where g(x) = £(x) - V(x,0) . (46)

The term U(x,t) decays exponentially with t and is called
the transient solution, while V(x,t) is independent of f (x)
and is called the steady state solution. We note that the
solution (33) of the discrete problem in section 2 was ex-
pressed in an analogous way.

If a steady state solution V(x,t) can be found, then the
problem (1) and (2) reduces to a problem (44) and (45) of the
same form, but with ¢~l and ¢1 identically zero. We shall ob-

tain formulae for V(x,t) when ¢-l and ¢l are polynomials in t.

For simplicity we solve (42) with the boundary conditions

= t = .
A,V eV ¢o( ) on X = O 2 @)
kl vV + ulvx = ¢l(t) on x=1 |, l

'
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The conditions (43) can be converted into (47) by suitable
transformations of x and t (but note that A_, p

1 1’ and ¢1 are
not the same in (43) and (47)).

. B, are not both zero and that

Suppose that « x

k

= k
g, (£) =a_ +o t+otat,
x (48)
¢l (t) = Bo + Bl t 4.+ Bkt .
Then the solution of (42) and (47) has the form
k .
N 21
Vix,t) =) x [yi(t) +xz, (t)] (49)
i=o
k j k 3
where yi(t) ='Z' Yij t and zi(t) =.Z‘ Zij t
J=o J=o
Algorithms for determining Yij and Zij are given below for
all relevant cases. Note that, for k<n, the functions
yn_i(t) and zn_i(t) are precisely the functions
§; (t) and n, (t) of section 2. (after the relevant transfor-
Constants p  are defined as follows: mations)
= 1; =, 021 p =o, :
P, =11 P (n?) n>2l; p =0, n<o
3.1 #o, A and A, not both zero
e N o) 1
Define 6, =(o., - A . and
5 =g = A ¥/ wy
Y . =vy., , 2 , =8, J=0, 4.0,k (50)
oj ~ Y3 oj j ) ’
i i - « ., = .+ N ’ ] = O, l)ooo,k"i
2i i -1) YlJ (3+1) Yi-l,3+l J (51)
(2i+1) 21 Zij = (j+1) Zi—l,j+l 3 i=1,...,k
Yj are determined successively from the relations
k
-1 .
= i : . N + . « . =k' k_l'..-' 52
Bj () iZj ; : (Yl F:LJ @, Glj). j o (52)

where Fij =By By Pr gt (hl “o‘lo u'1)pr - ho ll Pri1e

and Gij = by Py + hl Pry1’ for r = 2i - 2j .
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Set v, = a./% , define Y., and 2.. b 50) and (51),
vy =4/, i3 i Y (50) (51)

determining bj successively from

e 3 i i

x
_l ] . .
By = () f;j ; (6, F,. +2, G..), 3=k, k-1,...,0

+ A A

where Fij = Ao ul pr oM pr+l'

and Gi‘ = P + A

; -1 1 Py for r = 2i - 2j.

3.3 A

i
>
]
o

o 1

In this case there is an arbitrary constant term in

V(x,t), which may be taken as zero.

!

Y =O’Y

0o 03 2 yj_l/j, Yl' =y, J =0,...,k

3 ]
Determine Yj from (52) for j = k, k-1,...,0

with Fko = o0 and otherwise

Fij = 2 ¥ ¥y Ppryyr Gy =¥y p, forr=2i -2 .
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4. A Special Chebyshev Method for the Radiation Boundary Problem

The analysis of Sec. 2 can be simplified in two significant

respects if A _ satisfy

RS R RS

k-l = Xl, and u_l = ~Hy 3 ...{(53)
For the solution of a polynomial (25) of degree 2n then reduces
to the solution of two polynomials each of degree n, and the
solution of the system (36) of linear equations can be obtained
by the use of recurrence relations in order n2 operations.

Three situations in which (53) apply are as follows.

(a) Radiation at Boundary (compare Example (ii) of Sec. 1)

= = - = = 4
Ap=r =hAO -u_ =u =1 . ... (54a)

(b) Specified Temperature on Boundary

=0 ...(54b)

LS S |

(c) Specified Flux across Boundary

Ay =r =0 . ' ... (54c)
The problems (b) and (c¢) are in a sense special cases of (a)
in which h = », 0 respectively.
When (53) holds in equation: (20),
P(D) = R(D), Q(D) = -5(D)

and hence 2 P(D) a, = ﬁf?) + ¢§n)':

(n) _ (n)
20(0) by =0_," -6,
Thus (27) and (28) reduce to

m.t

-\ J
a, (t) - kj Aij e + g, (t), ...(55)
j=1

]

n~
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(£) = ° 75"
and b, (t) =" 1
i _ 5 Bij e + oy (t), ..-(56)
J=1
h . =1, A.., = (2n-2i+ -2i+ . A, . Fou.
where AO] AlJ (2n-2i+2) (2n-2i+1) MJ Al—l,j ul' . (57)
BOj =1, Bij = (2n-2i+3)(2n-21i+2) Hj Bi—l,j + ., ...(58)

-1 -1
M. = (m, and H. = (h.
3 ( J) nd H, ( J)

- e 3
and wm.} and -h.; are the roots of
(S | L ]J
P(z) = 0 and Q(z) = 0, with coefficients pj and qj given
by (21la).

N i
Thus nM.j and ~H.} are the roots of
U3 U3

n n-1
Py 2 + P, 2 + ... + p = 0, ...{(59)
n n-1
+ ¢ e e =
and qo b4 ql z + r q, 0, ...(60)
respectively.
Now suppose that g(x) = f(x) - V(x,0), where V(x,t) is

given by (35). Then the set of linear equations (36) reducCes to

+
U(x,0) = g(x) at x = - X5 i=1l, ..., n ...(61)
n 1 2n=21is m.t h.t
where U(x,t) = : x“0 lﬂk. A..ed +x1.B..e
~ 3 1] J 1] /

i=0 §=1

+
and - xi} are the zeros of T (x). To solve the system

2n

(61), we first form the unique polynomial

n-1 .
Fo(x) =" 2275

n %‘ I YR ...(62a)
1=0

of degree (2n-1) which interpolates g(x) at the relevant

points. The Lagrange formula for (62a) may be expressed as

n
( *

F_(x) = | (Gil Gy ,) L. (x), ...(62b)

X
n R
1 1

LI

i
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= L )| = 1l — (-
where G, ng(xi) + gl xi)J, G., 6A9(Xi) g ( xi)],

* ,’.w‘-~ ,.2 2 2 2.7
and L, = 7, . i(x -x. . =X -
i (x) 3£ i L( 3 )/(xl X )J
If a number of problems are to be solved, then the coefficients
*
in Li (x) may be regarded as known, and the computations of
- (= ) ' .
Fh-i) and lzn—ij from (62a) and (62b) thus involve about

2n  operations each.

<13

Let

X (y + x zn-i) be the polynomial which inter-

.

L n-i
1=0

polates g(x) at{iyi}subject to the constraints (l10a) and

(10b) on t = ¢, with Q—L E.Ql = 0. Then, since
pt-2n T, (%) = ug x4+ u .
numbers vy and v, can be found such that
Z‘XZl (yn—i + x zn_i)= Z;x21h1§n—i + x Zn—i) + (vl+v2x) ZFZi Uy
where we suppose that §O =2, = 0. Hence
y; = ?i + vy e Zg S Zi + vy Uy (i =0, ..., n) ...(63)

The constraints (10a) and (10b) require that

\ = \ =
) % Ypog T0and ) Bz, =0,

where @y and Bi are given by (18). PFrom (63), these equations

lead to formulae for vy and Voo

] < _
- o, G . - 8. .

- Z i ¥n-i , _ L 7i Zn-i .

- \

= T ...(64
\)l L o, u . V2 ) 3, U . ( )
1 n-=1 i
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Thus Y, and z, are now explicitly determined by (63),

and the equations (61) may be reduced by the <ornulation (10d) ko

n

l kj Aij - yi'

J:l i=0[ .o o, n-l .0-(65)
3 1 L. = Z, .

L 1] 1

j=1

Next define r. and si by the following algorithms.
i
r =y, (2n)! r. = (2n-2i)! y. = —23) ¢
i i7 uj (2n-23) ! J:i_:j
j=1
i=1l, ..., n ...(66)
i » :
S, = 2. (Zn+l) ! S5 = (2n~2i+1)! z, - Z»uj(Zn—2j+l)1 S,
3=1

="

i-3
i=1, ..., n ...(67)

By making use of the recurrence relations (57) and (58),

we can manipulate equations (65) into

i

% k. M. = '] :

Yok (M) = ry Z

c i i=0, ..., n-1 ...(68)
1, (H. =

L 3 ( 3) Si.j

Now suppose that le} were found from equation (59) in

the order Mh, Mn M,. Then Mj is a root of a deflated

1t e My
polynomial
- ] J-1
P. (2) = . Z7 o+ . Z + ... + p.. =0, ...(69
(z) =p Py Py (69)
whose coefficients pij have already been calculated. Since

Mys o -ee Mj are all roots of (69), we may deduce the following
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algorithm for the calculation of {k.? from (68).
3 I
\
J4L T L P.. x. ./ P, (Mj+l)’
j =n—l,..., l

r. =r, - k. ..(M, ) .;.(70)

, 1i=0, ..., j—l}

and k. =
1 r

-

A corresponding algorithm defines ilj}.

All the computations above, including the solution of
polynomials, involve order n2 operations. Thus this special
Chebyshev method has solved the discrete problem (9) and
(10a-c) in order n2 operations.

The case A_, = A, = 0 (compare section 2.l1) requires

1 1

some modifications. Choosem =0, set k¥ =2z , A. =20
n n n in

for all i, and solve (68) for kl' ceen kg
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5. Summary of the Chebyshev Computations

We summarize the essential parts of the Chebyshev method
and count up the number of operations of addition, multiplica-
tion, and division required in the derivation and subsequent
use of the discrete approximation U(x,t) to the transient
solution. Quantities independent of the general problem,
such as u, . (21) ¢!, L: (x), and Gij' will not be included in
the count.

The solution of a polynomial was performed by successive
deflations, calculating the dominant root at each stage by
Bernoulli's method to 2 figure accuracy followed by Newton's
method to final accuracy. Let Bi and N.l denote the numbers
of iterations which are found necessary in the respective

methods for the deflated polynomial of degree i, and define

~Td

= 1

K, = 1 B a1 - ... (71

3 "L (2i42) B, *+ (4irl) Ny | (71)
1=

In general it was found that, for n < 10, the values B, = 8

and N.l = 3 were hot exceeded.

5.1 Special Chebyshev Method

For the radiation boundary problem in Section 4, the even
and odd parts of U (x,t) were produced separately from
similar formulae. In Table 5 we analyée the computations
required for the unknowns kj' mj, Aij involved in the even

part of U(x,t). Operations of order no have been ignored.

Addition shows that the even (or odd) part of U(x,t) has been
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derived in
2 .
1ln” + 8n + Kn operations, .. {72)
which for B.1 = 8 and Ni = 3 gives 25n2 + Ain operations.
The evaluation of the even part at p values of x for m

values of t involves
mE2n2 + 18n-1 + 2pn’ omeractions. ...(73)

We have allowed 15 operations for the evaluation of x.em3t.
Table 6 ]

Derivation of Even Solution of Radiation Boundary Problem

Quantities Relevant Equations No. of Operations
(i) 7y (18) n
(i) Py (21a) n?+2n
2
1ii M., n. 59). 69) K +n
( ) 3 3 (59). ( o
(iv) §i (62a-b) 2n2-n
v) oy, (63), (64) 6n
(vi)  r, (66) n®+2n
(vii) (70) 3n°-2n
. 2
(viii) Aij (57) 3n

5.2 General Chebyshev Method

For the general method of Section 2 we do not give a
detailed analysis. Even and odd parts are not separable in

this case, and the derivation of U(x,t) can be shown to involve

2 3
-l8 3 n

which for B. = 8 and N.l = 3 becomes

n3 + 10 n2 + %4n.

+ 44 n® + 18n + K

on operations, ... {74)

18

win H
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of t involves

«.-(75)

operations.

-
i
-

h{?n2-+ 32n-1 4—p(4n+2)
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6. Advantages of the Chebyshev Method over the Fourier Method

The following simplifications have arisen from the Chebyshev

method:
(i)

(ii)

(iii)

The Fourier series involves sets of cosines and sines
which cannot in general (e.g. (54a)) be related by
recurrences. In the Chebyshev method the trigono-
metric functions have been replaced by polynomials
related by recurrences.

The calculation of a set of integrals has been replaced
by a process of polynomial interpolation. For example,
a set of Gaussian quadrature formulae are replaced by
a single interpolation formula.

The solution of equations like (a2 - h2) tan 2«0 = 2ah
has been replaced by the solution of polynomials.
Trigonometric functions are often computed from a

polynomial approximation in any case.

In addition to these three simplifications are the followihg

advantages:

(iv)

(v)

The Chebyshev series can be expected to converge more
rapidly than the Fourier series, especially when f£f(x)
is not truly periodic.

The Chebyshev method could, in principle, be applied

for any 1 A , whereas the Fourier method

RS RS LS|
has only been applied to mixed boundary problems for

which A A = 0.

y ALt T TR |

6.1J§gperigal Example
To compare the convergence rates of the two methods, con-

sider a problem for which the Fourier method is particularly

simple.

"Vt"'O

2
=¢g onx =0, v=4=t on x = 1,

and v =cos k¥ mxont=o0
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The steady state solution, by gsection 3, has the form

. vix,t) = —14-2- (xz—l) (x2—5) + t(x2-1) + 2
and the transient solution from the Fourier method truncates
into n
-85t » j -5 -8.
U({x,t) = e 17 cos o, x + 4 Z (--l)J (c.) 3 e th cos o.X,
1 & j 3
J
where o ‘(2j-l)E B. = (« )2
3 2" 73 j* e

By symmetry about x=0, this problem is of form (54b), and the
Chebyshev method of Section 4 is applicable. Since g(x) is
even, the solution U(x,t) of the relevant discrete problem has

form

n
= \ .
vt =) . e (x),

i% 321 Cij 2i
dependent on just 2n unknowns ml""'mn’kl""'kn°

. In tables 1 and 2, the coefficients --mj and Bj are com-
pared for various values of n, and the convergence of some
individual Chebyshev coefficients Cij with n is shown. 1In
Table 3, the maximum errors in U(x,t) are compared for the two
methods for various values of n, thus demonstrating the su-

perior convergence of the Chebyshev series.

Table 1 Exponents

Chebyshev Fourier

n=3 n=4 n=5 n=5
-y 2.467 2.467 2.467 Bl 2.467
-m, 23,711 22,233 22,207 Bz 22,207
-m, 393.822 75.646 62.595 83 61.685
-m, 1243.652 178.534 84 120.903
-m 3034.181 BS 199.859
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Table 2

Some Chebyshev Coefficients

n=3 n=4
0.2745776 0.2745755
-0.0004911 -0.0004599
-0.0000019 -0.0000308
-0.0000003

Table 3

Maximum Errors in U(x, t)

n=5
0.2745755
-0.0004576
-0.0000288
-0.0000045
-0.0000000

Chebyshev Method

0.0001
0.000007
0.0000016

Fourier Method

0.00004
0.00001
0.000005
0.0000025
0.0000013
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7. comparison of Chebyshev and Crank-Nicolson Methods

A comparison is made of results cbtained for three
typical problems of the radiation boundary type in the case
¢_l = ¢1 = 0.

The appsoximate number of operations required by the
Crank-Nicolson method to calculate the numerical solution
U(x,t) at n equally spaced values of x on each of m equally
spaced t-lines 1is

3n + m (9n -6),
using efficient recurrence relations described in Smith (1965).
It is assumed that grid points are excluded at which the
solution may be determined by symmetry or from the boundary
data. Since m is generally regarded as being of order n2,
the method involves order n3 operations, compared with order
n2 by (72) for the corresponding Chebyshev method.

A summary of the results of the three examples is given
in Table 4. The Crank-Nicolson solutions were generated at
intervals of .1l or .2 in x at the following basic t-values:

t =.1, .2, .3, .4, .5, .7, 1, 1.5, 2, 3, 4.
Intermediate steps in t were halved until further divisions
produced solutions different by less than 0.0001l. An analo-
gous estimate was used in the Chebyshev method, comparing
values of U(x,t) obtained at intervals of .2 in x on the line
t = .1. Thus both methods were accurate to about 4 decimals

for all t > .1, corresponding to the region in which discon-

tinuities had become smoothed out.



t > 0.

Example A. y_ continuous

Consider again the example of Section 6.l1l. 1In this case

the accuracy 0.0001 was obtained for all t.

Example B. vy discontinuous

Consider the radiation problem (54a) with h = 1 and

initial distribution
f(x) = cos %nm x + sin km x.

The exponents mj and hj of the Chebyshev method, which are
independent of f£(x), were observed to be converging rapidly
to the corresponding exponents -ajz of the Fourier series,
tabulated in Appendix IV of Carslaw and Jaeger (1959). At the
point t = 0, the Chebyshev solution of Table 4 attained its
maximum error of .05.

Example €. v discontinuous

Consider problem (54b) with

v = 0 on x -1l and on x = 1,

v l ont = 0.

On t = 0 the Chebyshev solution U(x,0) is that polynomial
which interpolates f£(x) = 1 at the zeros of '1‘2n (x), but

which equals zero at x = -1 and 1.

Thus U(x,0) = 1 - T (x), and the error on t = 0 has

2n
maximum value i for every n. However, our results suggest
that, like the Fourier series, the Chebyshev solutions con-

verge uniformly with n on the range r—l. l] of x for every




Example A
Example B

Example C
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Table 4

Comparison of Methods for Accuracy .0001l.

Chebyshev Crank-Nicolson
Number of Operations Number of | Number of
_ . Error n | t steps | Operations
Derivation |Estimation
220 100 10 35 3270
850 360 11 96 9300
430 140 5 58 2430

Thus in these examples the Chebyshev method has proved

to be from 4 to 10 times as efficient as Crank~Nicolson,

allowing only for a crude error estimate.
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